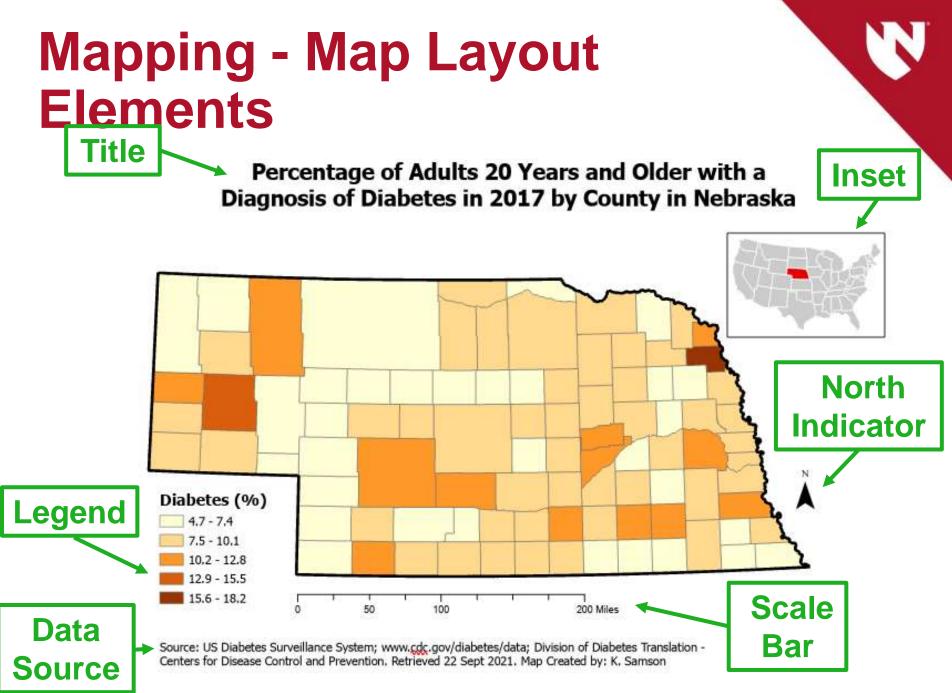
Spatial analysis in public health applications

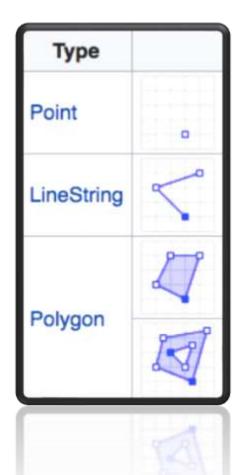
Siddhi Munde, MSc

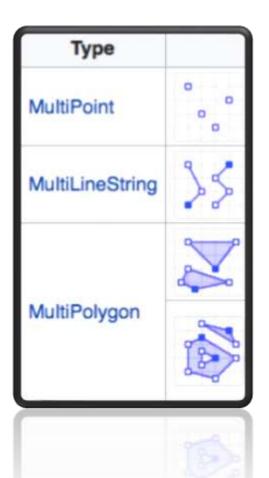
Research Data Analyst PhD student – MSIA Department of Environmental, Agricultural & Occupational Health, COPH,UNMC

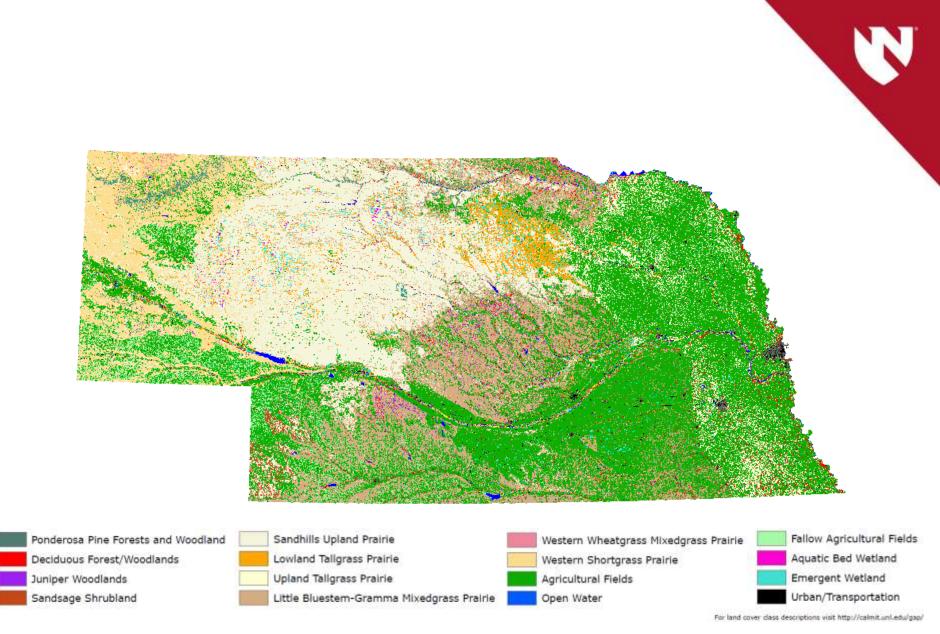

Topics

- Introduction to GIS data types and mapping
- Hotspot analysis methods
 - Local Moran's I statistics
 - Getis Ord G* statistics
- Space-time analysis in ArcGIS
- Spatial correlation in R

What is GIS?


"GIS, or **geographic information systems**, are computer-based tools used to store, visualize, analyze, and interpret geographic data. Geographic data (also called spatial, or geospatial data) identifies the geographic location of features."


-CDC



GIS and data type

Vector data

Spatial Analysis

Hotspot analysis

- Analysis for identification of clustering of spatial phenomenon represented as points on map
- Points can represent an event or object
- Hotspot defined as concentration of events

Public health research

- Where did the disease occur?
 - Spatial analysis
- When and where did the disease occur?
 - Space-time analysis

Spatial autocorrelation

- Spatial autocorrelation refers to the correlation of a variable with itself in a space with neighbor
- Most common interpretation is in terms of trends, gradients, or patterns across a map
- Commonly used in hotspot analysis

Common Measures of spatial autocorrelation

- LISA (Local Moran'I) statistics
- Getis Ord G* statistics

Global measures of spatial association

- Gives single statistic that summarizes whether the values (of the single variable) are similar to their neighbors across the entire study region.
- It, however, does not tell us where the similarity or dissimilarity occurs.
- Example : Global Moran's I statistics

Positive autocorrelation

Negative autocorrelation


No spatial autocorrelation

Local measures of spatial association

- Local measures call on the principle of spatial heterogeneity, which assumes that the relationships between locations are not constant over the study area
- Provide means of measuring **local variation**
- Example : Local Moran's I statistics, Getis-Ord G* statistics

Local Moran's I

- Local Moran's / is the most widely used LISA statistic to locate local clusters and spatial outliers
- For each observation and neighboring observations *j*, the equation for local Moran's *l* incorporates **deviations from the mean**
- Aim is to quantify how similar or different the variable values for each observation and their neighbors are when compared to the global average.

Source :https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/cluster-and-outlier-analysis-anselin-local-moran-s.htm

Getis Ord G* statistics

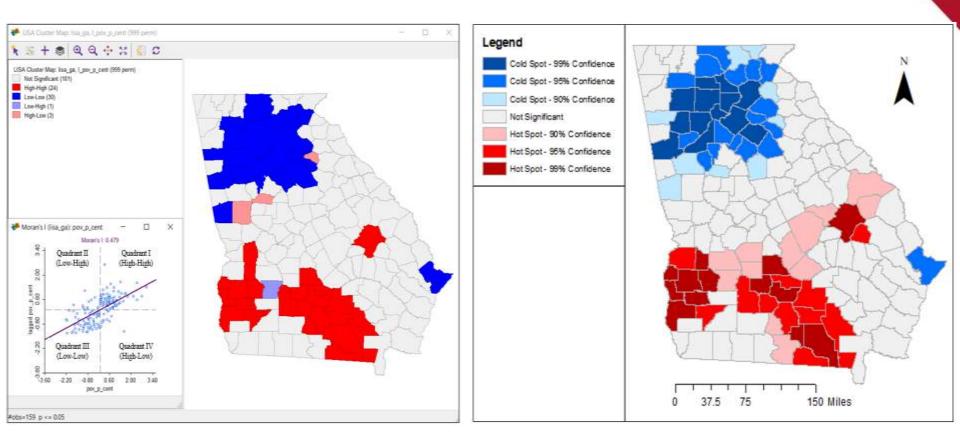
- Measures overall concentration of similar or dissimilar values located within a specified distance of one another.
- Identifies local spatial clustering patterns, namely "hot spots" (spatial clusters of high values) and "cold spots" (spatial clusters of low values).

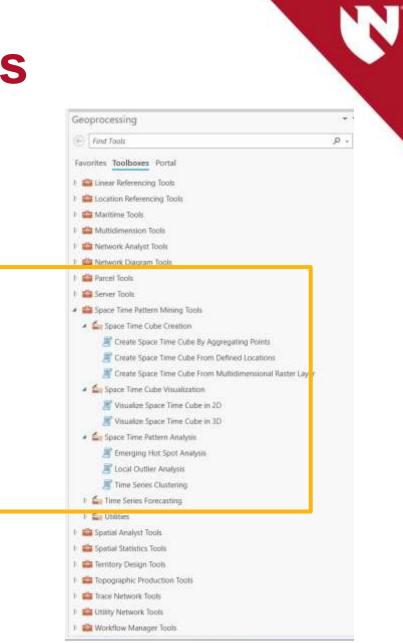
Source : https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/hot-spot-analysis.htm

Difference between Local Moran's I and Getis Ord * statistics

- Moran's I statistics measures similarity of nearby features with respect to global mean
- Getis Ord * statistics indicate whether high or low values are concentrated over the area
- Hence, when question is
 - Is data clustered(autocorrelated) -> Local Moran's I statistics
 - Is data cluster of high/low values ? -> Getis Ord G* statistics

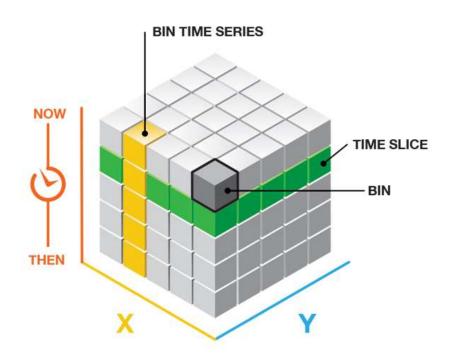
Analysis of county-level poverty rate in Georgia




Figure 1. A Moran scatterplot (lower left) and corresponding map (right) showing counties that are spatial clusters (High-High, Low-Low) or spatial outliers (High-Low, Low-High) of poverty rates in the state of Georgia. Figure 2. A hot spot map of county-level poverty rate in the state of Georgia generated using Getis-Ord Gi*.

Source : https://gistbok.ucgis.org/bok-topics/local-measures-spatial-association

Space time pattern mining in ArcGIS

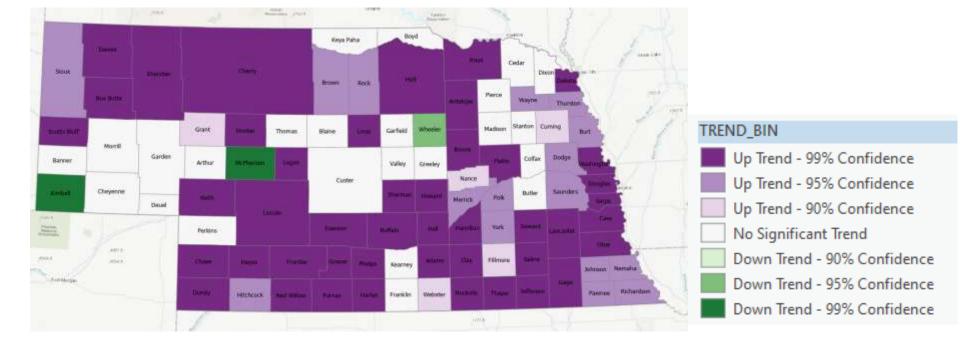

Space-time Analysis

 Space time pattern mining toolbox in ArcGIS pro

Space time cube by aggregating points

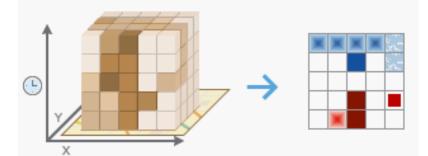
- A space time cube is created from space- time dataset
- Summarizes a set of points into a netCDF data structure by aggregating them into space-time bins.
- Within each bin, the points are counted, and specified attributes are aggregated.

Source : https://pro.arcgis.com/en/pro-app/latest/tool-reference/space-time-pattern-mining/create-space-time-cube.htm


Application to thyroid cancer incidence

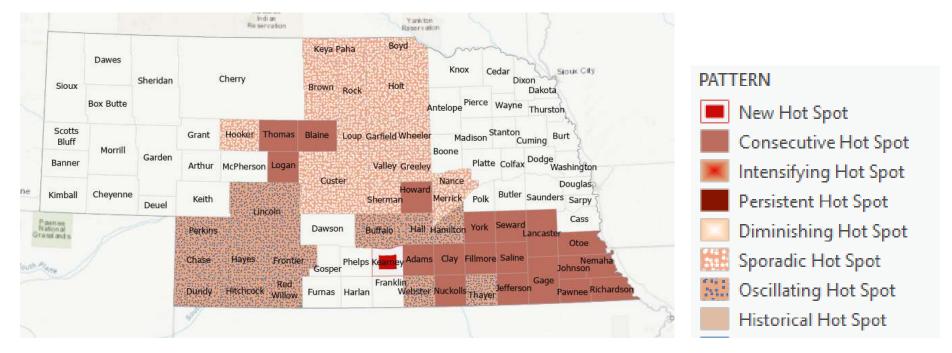
- Data
 - Thyroid cancer data from Nebraska cancer registry
 - Calculated 5 year rolling average of age adjusted thyroid cancer incidence rate by county for Nebraska state
 - Time period 1990-2004

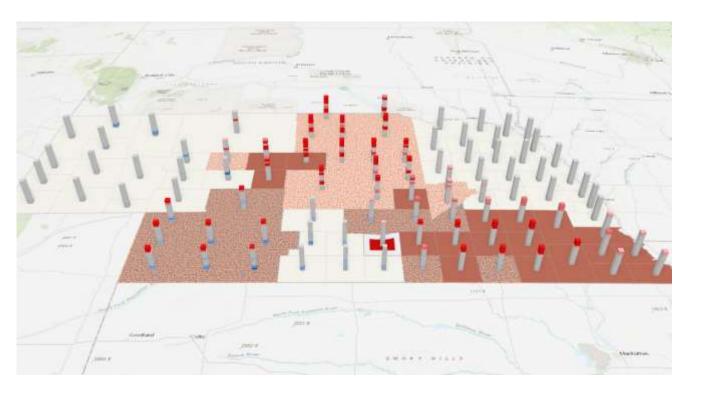
Trend analysis in space time cube


- The **Mann-Kendall trend test** is performed on every location with data as an independent bin time-series test.
- The Mann-Kendall statistic is a rank correlation analysis for the bin count or value and their time sequence.

Trend analysis

Emerging hotspot analysis -Identifies patterns


- Calculates the Getis-Ord Gi* statistic for each bin in the cube and generates zscore, p-value, and hot spot bin classification
- Identifies patterns of statistically significant new, intensifying, diminishing, and sporadic hot and cold spots
- Next, these trends are evaluated using the <u>Mann-Kendall trend test</u>.
- With the trend z-score and p-value for each location and the hot spot z-score and p-value for each bin, the <u>Emerging</u> <u>Hot Spot Analysis</u> tool categorizes each study area location into patterns


Patterns from Emerging hotspot analysis

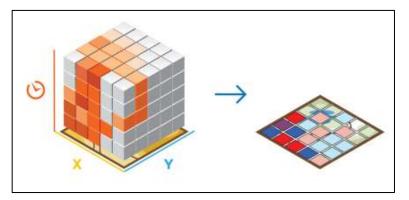
	Pattern Name	Definition
	No Fattern Detected	Does not fall into any of the hot or cold spot petterns defined below.
	New Hot Spot	A location that is a statistically significant hot spot for the final time step and has never been a statistically significant hot spot before.
	Consecutive Hot:Spot	A location with a single uninterrupted run of statistically significant hot spot bins in the final time-step intervals. The location has never been a statistically significant hot spot prior to the final hot spot run and less than ninety percent of all bins are statistically significant hot spots.
×	Intensifying Hot Spot	A location that has been a statistically significant hot spot for ninety percent of the time-step intervals, including the final time step. In addition, the intensity of clustering of high counts in each time step is increasing overall and that increase is statistically significant.
	Persistent Hot Spot	A location that has been a statistically significant hot spot for ninety percent of the time-step intervals with no discernible trend indicating an increase or decrease in the intensity of clustering over time.
	Diminishing Hot Spot	A location that has been a statistically significant hot spot for ninety parcent of the time-step intervals, including the final time step. In addition, the intensity of dustering in each time step is decreasing overall and that decrease is statistically significant.
	Sporadic Hot Spot	A location that is an on-egain then off-egain hot spot. Less than ninety percent of the time-step intervals have been statistically significant hot spots and none of the time-step intervals have been statistically significant cold spots.
	Oscillating Hot Spot	A statistically significant hot spot for the final time-step interval that has a history of also being a statistically significant cold spot during a prior time step. Less than ninety percent of the sime-step intervals have been statistically significant hot spots.
	Historical Hot Spot	The most recent time period is not hot, but at least ninety percent of the time-step Intervals have been statistically significant hot spots.

Emerging hotspot analysis thyroid cancer incidence

3D Emerging hotspot analysis results

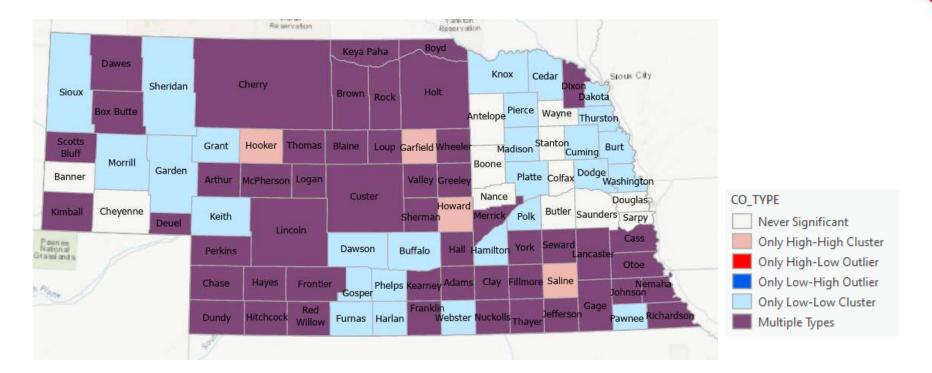
HS_BIN

Hot Spot - 99% Confidence

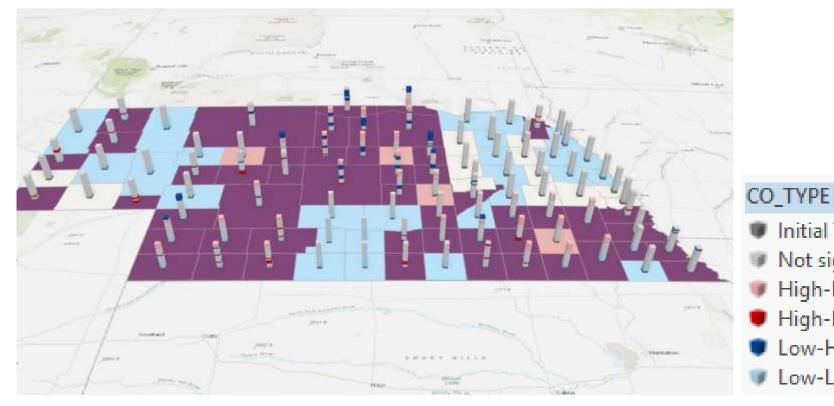

- Hot Spot 95% Confidence
- Hot Spot 90% Confidence
- Not Significant
- Cold Spot 90% Confidence
- Cold Spot 95% Confidence
- Cold Spot 99% Confidence

PATTERN

Local outlier analysis – Identify clusters and outliers


- Find locations in your study area that have been statistically different than their neighbors in both space and time.
- Space-time implementation of the Anselin Local Moran's I statistic
- Tool calculates a Local Moran's I index, a pseudo p-value and a type code representing the cluster or outlier category type for each statistically significant bin in the input Space Time Cube
- An index with a positive value indicates that a bin has neighboring bins with similarly high or low attribute values; this bin is part of a cluster.
- An index with a negative value indicates that a bin has **neighboring bins with dissimilar values**; this bin is an **outlier**.

Patterns in Cluster and outlier analysis


Type Name	Definition
Never Significant	A location where there has never been a statistically significant CO_TYPE.
Only High-High Cluster	A location where the only statistically significant type throughout time has been High- High Clusters.
Only High-Low Outlier	A location where the only statistically significant type throughout time has been High- Low Outliers.
Only Low- High Outlier	A location where the only statistically significant type throughout time has been Low- High Outliers.
Only Low- Low Cluster	A location where the only statistically significant type throughout time has been Low- Low Clusters.
Multiple Types	A location where there has been multiple types of statistically significant cluster and outlier types throughout time (for instance, during some time periods the location has been a Low-High Outlier, and during other time periods it has been a High-High Cluster).

Clusters and outlier analysis results

- High-High or Low-low cluster represents high risk or low risk of thyroid cancer cases in space and time
- **High-Low outlier** is high risk county surrounded by low-risk county and thus immediate attention required to that county
- Low-High outlier represents county with low risk but surrounded by high-risk county. Thus, prevention and monitoring required for these counties

3D visualization of outlier analysis

Initial Time Step Not significant High-High Cluster High-Low Outlier

- Low-High Outlier
- Low-Low Cluster

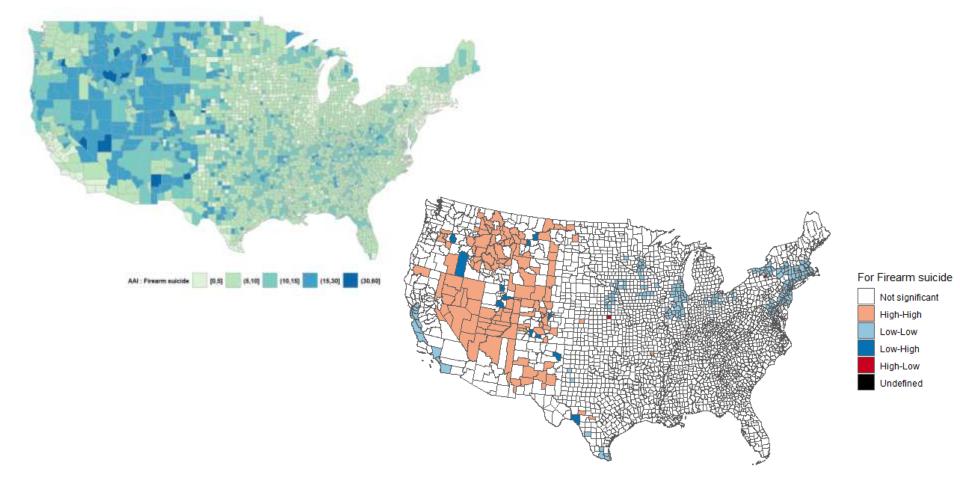
Conclusion

- Trend analysis shows that thyroid cancer incidence has been increasing in Nebraska from 1990-2014.
- Kearney is a new emerging hotspot for thyroid cancer.
- Counties in central Nebraska has been sporadic hotspot throughout the time period. Southern Nebraska counties are consecutive hotspot for thyroid cancer

Next steps

- Bivariate analysis to identify association between thyroid cancer and pesticide application by county
- Are there space time trends between pesticide application and emergence of thyroid cancer ?

Spatial correlation in R


R package - rgeoda

- This package includes functions for spatial data analysis in R
- Includes various spatial association measures and spatial clustering
- Resources : <u>https://geodacenter.github.io/rgeoda/</u>

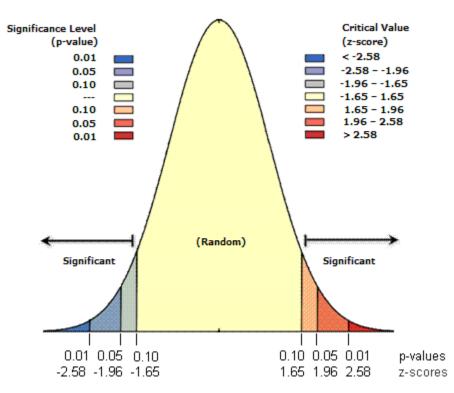
<u>https://geodacenter.github.io/rgeoda/articles</u> /rgeoda_tutorial.html

LISA in R

Spatial clusters and outliers for firearm suicide AAI rate by county in USA

Take away

- Spatial autocorrelation methods for hotspot analysis have many applications in public health research studies
- However, it is important to relate the outcome of the statistics with our research question
- The space time pattern mining toolbox from ArcGIS shows strong potential to go beyond just spatial analysis



BREAKTHROUGHS FOR LIFE.*

Spatial association

- Describes how values observation or samples are related in space
- Based upon Tobler's First Law of Geography "Everything is related to everything else, but near things are more related than distant things"
- Can be measured locally or globally

About me

Background:

- Bachelor in Engineering (IT) from India
- MSc Geoinformatics -Netherlands

Research Interest

- Spatial analysis
- Machine learning

